Open Access
October 2017 On the Morse-Novikov number for 2-Knots
Hisaaki Endo, Andrei Pajitnov
Osaka J. Math. 54(4): 723-734 (October 2017).

Abstract

Let $K\subset S^4$ be a 2-knot. The Morse-Novikov number ${\mathcal M}{\mathcal N}(K)$ is the minimal possible number of critical points of a Morse map $S^4\setminus K\to S^1$ belonging to the canonical class in $H^1(S^4\setminus K)$. We prove that for a classical knot $K\subset S^3$ the Morse-Novikov number of the spun knot $S(K)$ is $\leq 2{\mathcal M}{\mathcal N}(K)$. This enables us to compute ${\mathcal M}{\mathcal N}(S(K))$ for every classical knot $K$ with tunnel number 1.

Citation

Download Citation

Hisaaki Endo. Andrei Pajitnov. "On the Morse-Novikov number for 2-Knots." Osaka J. Math. 54 (4) 723 - 734, October 2017.

Information

Published: October 2017
First available in Project Euclid: 20 October 2017

MathSciNet: MR3715359
zbMATH: 06821134

Subjects:
Primary: 57M25 , 57Q45 , 57R35 , 57R45 , 57R70

Rights: Copyright © 2017 Osaka University and Osaka City University, Departments of Mathematics

Vol.54 • No. 4 • October 2017
Back to Top