Abstract
In this paper, we shall give a way to construct a graded Lie algebra $L(\mathfrak{g},\rho,V,{\cal V},B_0)$ from a standard pentad $(\mathfrak{g},\rho,V,{\cal V},B_0)$ which consists of a Lie algebra $\mathfrak{g}$ which has a non-degenerate invariant bilinear form $B_0$ and $\mathfrak{g}$-modules $(\rho, V)$ and ${\cal V}\subset \mathrm {Hom }(V,F)$ all defined over a field $F$ with characteristic $0$. In general, we do not assume that these objects are finite-dimensional. We can embed the objects $\mathfrak{g},\rho,V,{\cal V}$ into $L(\mathfrak{g},\rho,V,{\cal V},B_0)$. Moreover, we construct specific positively and negatively graded modules of $L(\mathfrak{g},\rho,V,{\cal V},B_0)$. Finally, we give a chain rule on the embedding rules of standard pentads.
Citation
Nagatoshi Sasano. "Lie algebras constructed with Lie modules and their positively and negatively graded modules." Osaka J. Math. 54 (3) 533 - 568, July 2017.