Open Access
2019 Π10-Encodability and Omniscient Reductions
Benoit Monin, Ludovic Patey
Notre Dame J. Formal Logic 60(1): 1-12 (2019). DOI: 10.1215/00294527-2018-0020
Abstract

A set of integers A is computably encodable if every infinite set of integers has an infinite subset computing A. By a result of Solovay, the computably encodable sets are exactly the hyperarithmetic ones. In this article, we extend this notion of computable encodability to subsets of the Baire space, and we characterize the Π10-encodable compact sets as those which admit a nonempty Σ11-subset. Thanks to this equivalence, we prove that weak weak König’s lemma is not strongly computably reducible to Ramsey’s theorem. This answers a question of Hirschfeldt and Jockusch.

References

1.

[1] Brattka, V., and T. Rakotoniaina, “On the uniform computational content of Ramsey’s theorem,” Journal of Symbolic Logic, vol. 82 (2017), pp. 1278–316. MR3743611 06824519 10.1017/jsl.2017.43[1] Brattka, V., and T. Rakotoniaina, “On the uniform computational content of Ramsey’s theorem,” Journal of Symbolic Logic, vol. 82 (2017), pp. 1278–316. MR3743611 06824519 10.1017/jsl.2017.43

2.

[2] Cholak, P. A., C. G. Jockusch, Jr., and T. A. Slaman, “On the strength of Ramsey’s theorem for pairs,” Journal of Symbolic Logic, vol. 66 (2001), pp. 1–55. 0977.03033 10.2307/2694910[2] Cholak, P. A., C. G. Jockusch, Jr., and T. A. Slaman, “On the strength of Ramsey’s theorem for pairs,” Journal of Symbolic Logic, vol. 66 (2001), pp. 1–55. 0977.03033 10.2307/2694910

3.

[3] Chong, C. T., and L. Yu, Recursion Theory: Computational Aspects of Definability, vol. 8 of De Gruyter Series in Logic and its Applications, De Gruyter, Berlin, 2015. MR3381097[3] Chong, C. T., and L. Yu, Recursion Theory: Computational Aspects of Definability, vol. 8 of De Gruyter Series in Logic and its Applications, De Gruyter, Berlin, 2015. MR3381097

4.

[4] Dorais, F. G., D. D. Dzhafarov, J. L. Hirst, J. R. Mileti, and P. Shafer, “On uniform relationships between combinatorial problems,” Transactions of the American Mathematical Society, vol. 368 (2016), pp. 1321–59. 06560459 10.1090/tran/6465[4] Dorais, F. G., D. D. Dzhafarov, J. L. Hirst, J. R. Mileti, and P. Shafer, “On uniform relationships between combinatorial problems,” Transactions of the American Mathematical Society, vol. 368 (2016), pp. 1321–59. 06560459 10.1090/tran/6465

5.

[5] Downey, R. G., and D. R. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, New York, 2010. 1221.68005[5] Downey, R. G., and D. R. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, New York, 2010. 1221.68005

6.

[6] Dzhafarov, D. D., and C. G. Jockusch, Jr., “Ramsey’s theorem and cone avoidance,” Journal of Symbolic Logic, vol. 74 (2009), pp. 557–78.[6] Dzhafarov, D. D., and C. G. Jockusch, Jr., “Ramsey’s theorem and cone avoidance,” Journal of Symbolic Logic, vol. 74 (2009), pp. 557–78.

7.

[7] Dzhafarov, D. D., L. Patey, D. R. Solomon, and L. B. Westrick, “Ramsey’s theorem for singletons and strong computable reducibility,” Proceedings of the American Mathematical Society, vol. 145 (2017), pp. 1343–55. 06668907 10.1090/proc/13315[7] Dzhafarov, D. D., L. Patey, D. R. Solomon, and L. B. Westrick, “Ramsey’s theorem for singletons and strong computable reducibility,” Proceedings of the American Mathematical Society, vol. 145 (2017), pp. 1343–55. 06668907 10.1090/proc/13315

8.

[8] Galvin, F., and K. Prikry, “Borel sets and Ramsey’s theorem,” Journal of Symbolic Logic, vol. 38 (1973), pp. 193–98. 0276.04003 10.2307/2272055[8] Galvin, F., and K. Prikry, “Borel sets and Ramsey’s theorem,” Journal of Symbolic Logic, vol. 38 (1973), pp. 193–98. 0276.04003 10.2307/2272055

9.

[9] Gandy, R. O., G. Kreisel, and W. W. Tait, “Set existence,” Bulletin L’Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 8 (1960), pp. 577–82.[9] Gandy, R. O., G. Kreisel, and W. W. Tait, “Set existence,” Bulletin L’Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 8 (1960), pp. 577–82.

10.

[10] Groszek, M. J., and T. A. Slaman, “Moduli of computation,” conference lecture on Logic, Computability and Randomness, Buenos Aires, Argentina, 2007.[10] Groszek, M. J., and T. A. Slaman, “Moduli of computation,” conference lecture on Logic, Computability and Randomness, Buenos Aires, Argentina, 2007.

11.

[11] Hinman, P. G., “A survey of Mučnik and Medvedev degrees,” Bulletin of Symbolic Logic, vol. 18 (2012), pp. 161–229. 1248.03063 10.2178/bsl/1333560805 euclid.bsl/1333560805[11] Hinman, P. G., “A survey of Mučnik and Medvedev degrees,” Bulletin of Symbolic Logic, vol. 18 (2012), pp. 161–229. 1248.03063 10.2178/bsl/1333560805 euclid.bsl/1333560805

12.

[12] Hirschfeldt, D. R., and C. G. Jockusch, Jr., “On notions of computability-theoretic reduction between $\Pi^{1}_{2}$ principles,” Journal of Mathematical Logic, vol. 16 (2016), no. 1, art. ID 1650002.[12] Hirschfeldt, D. R., and C. G. Jockusch, Jr., “On notions of computability-theoretic reduction between $\Pi^{1}_{2}$ principles,” Journal of Mathematical Logic, vol. 16 (2016), no. 1, art. ID 1650002.

13.

[13] Hirschfeldt, D. R., C. G. Jockusch, Jr., B. Kjos-Hanssen, S. Lempp, and T. A. Slaman, “The strength of some combinatorial principles related to Ramsey’s theorem for pairs,” pp. 143–61 in Computational Prospects of Infinity, Part II: Presented Talks, vol. 15 of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, World Scientific, Hackensack, NJ, 2008. 1167.03009[13] Hirschfeldt, D. R., C. G. Jockusch, Jr., B. Kjos-Hanssen, S. Lempp, and T. A. Slaman, “The strength of some combinatorial principles related to Ramsey’s theorem for pairs,” pp. 143–61 in Computational Prospects of Infinity, Part II: Presented Talks, vol. 15 of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, World Scientific, Hackensack, NJ, 2008. 1167.03009

14.

[14] Jockusch, C. G., Jr., “Ramsey’s theorem and recursion theory,” Journal of Symbolic Logic, vol. 37 (1972), pp. 268–80.[14] Jockusch, C. G., Jr., “Ramsey’s theorem and recursion theory,” Journal of Symbolic Logic, vol. 37 (1972), pp. 268–80.

15.

[15] Jockusch, C. G., Jr., and R. I. Soare, “$\Pi^{0}_{1}$ classes and degrees of theories,” Transactions of the American Mathematical Society, vol. 173 (1972), pp. 33–56. 0262.02041[15] Jockusch, C. G., Jr., and R. I. Soare, “$\Pi^{0}_{1}$ classes and degrees of theories,” Transactions of the American Mathematical Society, vol. 173 (1972), pp. 33–56. 0262.02041

16.

[16] Jockusch, C. G., Jr., and R. I. Soare, “Encodability of Kleene’s $O$, Journal of Symbolic Logic, vol. 38 (1973), pp. 437–40.[16] Jockusch, C. G., Jr., and R. I. Soare, “Encodability of Kleene’s $O$, Journal of Symbolic Logic, vol. 38 (1973), pp. 437–40.

17.

[17] Montalbán, A., “Open questions in reverse mathematics,” Bulletin of Symbolic Logic, vol. 17 (2011), pp. 431–54. 1233.03023 10.2178/bsl/1309952320 euclid.bsl/1309952320[17] Montalbán, A., “Open questions in reverse mathematics,” Bulletin of Symbolic Logic, vol. 17 (2011), pp. 431–54. 1233.03023 10.2178/bsl/1309952320 euclid.bsl/1309952320

18.

[18] Moschovakis, Y. N., Descriptive Set Theory, 2nd edition, vol. 155 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2009. 1172.03026[18] Moschovakis, Y. N., Descriptive Set Theory, 2nd edition, vol. 155 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2009. 1172.03026

19.

[19] Nies, A., Computability and Randomness, vol. 51 of Oxford Logic Guides, Oxford University Press, Oxford, 2009. MR2548883 1169.03034[19] Nies, A., Computability and Randomness, vol. 51 of Oxford Logic Guides, Oxford University Press, Oxford, 2009. MR2548883 1169.03034

20.

[20] Patey, L., “The weakness of being cohesive, thin or free in reverse mathematics,” Israel Journal of Mathematics, vol. 216 (2016), pp. 905–55. 1368.03018 10.1007/s11856-016-1433-3[20] Patey, L., “The weakness of being cohesive, thin or free in reverse mathematics,” Israel Journal of Mathematics, vol. 216 (2016), pp. 905–55. 1368.03018 10.1007/s11856-016-1433-3

21.

[21] Sacks, G. E., Degrees of Unsolvability, vol. 55 of Annals of Mathematics Studies, Princeton University Press, Princeton, 1963.[21] Sacks, G. E., Degrees of Unsolvability, vol. 55 of Annals of Mathematics Studies, Princeton University Press, Princeton, 1963.

22.

[22] Sacks, G. E., Higher Recursion Theory, Perspectives in Mathematical Logic, Springer, Berlin, 1990. 0716.03043[22] Sacks, G. E., Higher Recursion Theory, Perspectives in Mathematical Logic, Springer, Berlin, 1990. 0716.03043

23.

[23] Seetapun, D., and T. A. Slaman, “On the strength of Ramsey’s theorem,” Notre Dame Journal of Formal Logic, vol. 36 (1995), pp. 570–82. 0843.03034 10.1305/ndjfl/1040136917 euclid.ndjfl/1040136917[23] Seetapun, D., and T. A. Slaman, “On the strength of Ramsey’s theorem,” Notre Dame Journal of Formal Logic, vol. 36 (1995), pp. 570–82. 0843.03034 10.1305/ndjfl/1040136917 euclid.ndjfl/1040136917

24.

[24] Shore, R. A., “Reverse mathematics: The playground of logic,” Bulletin of Symbolic Logic, vol. 16 (2010), pp. 378–402. 1218.03006 10.2178/bsl/1286284559 euclid.bsl/1286284559[24] Shore, R. A., “Reverse mathematics: The playground of logic,” Bulletin of Symbolic Logic, vol. 16 (2010), pp. 378–402. 1218.03006 10.2178/bsl/1286284559 euclid.bsl/1286284559

25.

[25] Silver, J., “Every analytic set is Ramsey,” Journal of Symbolic Logic, vol. 35 (1970), pp. 60–64. 0216.01304 10.1017/S0022481200092239[25] Silver, J., “Every analytic set is Ramsey,” Journal of Symbolic Logic, vol. 35 (1970), pp. 60–64. 0216.01304 10.1017/S0022481200092239

26.

[26] Simpson, S. G., Subsystems of Second Order Arithmetic, 2nd edition, Perspectives in Logic, Cambridge University Press, Cambridge, 2009. 1181.03001[26] Simpson, S. G., Subsystems of Second Order Arithmetic, 2nd edition, Perspectives in Logic, Cambridge University Press, Cambridge, 2009. 1181.03001

27.

[27] Soare, R. I., “Sets with no subset of higher degree,” Journal of Symbolic Logic, vol. 34 (1969), pp. 53–56. 0182.01602 10.2307/2270981[27] Soare, R. I., “Sets with no subset of higher degree,” Journal of Symbolic Logic, vol. 34 (1969), pp. 53–56. 0182.01602 10.2307/2270981

28.

[28] Solovay, R. M., “Hyperarithmetically encodable sets,” Transactions of the American Mathematical Society, vol. 239 (1978), pp. 99–122. 0411.03039 10.1090/S0002-9947-1978-0491103-7[28] Solovay, R. M., “Hyperarithmetically encodable sets,” Transactions of the American Mathematical Society, vol. 239 (1978), pp. 99–122. 0411.03039 10.1090/S0002-9947-1978-0491103-7

29.

[29] Spector, C., “Recursive well-orderings,” Journal of Symbolic Logic, vol. 20 (1955), pp. 151–63. 0067.00303 10.2307/2266902[29] Spector, C., “Recursive well-orderings,” Journal of Symbolic Logic, vol. 20 (1955), pp. 151–63. 0067.00303 10.2307/2266902
Copyright © 2019 University of Notre Dame
Benoit Monin and Ludovic Patey "Π10-Encodability and Omniscient Reductions," Notre Dame Journal of Formal Logic 60(1), 1-12, (2019). https://doi.org/10.1215/00294527-2018-0020
Received: 3 March 2016; Accepted: 31 October 2016; Published: 2019
Vol.60 • No. 1 • 2019
Back to Top