Open Access
2017 On Polynomial-Time Relation Reducibility
Su Gao, Caleb Ziegler
Notre Dame J. Formal Logic 58(2): 271-285 (2017). DOI: 10.1215/00294527-3867118
Abstract

We study the notion of polynomial-time relation reducibility among computable equivalence relations. We identify some benchmark equivalence relations and show that the reducibility hierarchy has a rich structure. Specifically, we embed the partial order of all polynomial-time computable sets into the polynomial-time relation reducibility hierarchy between two benchmark equivalence relations Eλ and id. In addition, we consider equivalence relations with finitely many nontrivial equivalence classes and those whose equivalence classes are all finite.

References

1.

[1] A. Blass and Y. Gurevich, “Equivalence relations, invariants, and normal forms,” SIAM Journal on Computing, vol. 13 (1984), pp. 682–89. MR764172 0545.68036 10.1137/0213042[1] A. Blass and Y. Gurevich, “Equivalence relations, invariants, and normal forms,” SIAM Journal on Computing, vol. 13 (1984), pp. 682–89. MR764172 0545.68036 10.1137/0213042

2.

[2] A. Blass and Y. Gurevich, “Equivalence relations, invariants, and normal forms, II,” pp. 24–42 in Logic and Machines: Decision Problems and Complexity (Münster, 1983), vol. 171 of Lecture Notes in Computer Science, Springer, Berlin, 1984.[2] A. Blass and Y. Gurevich, “Equivalence relations, invariants, and normal forms, II,” pp. 24–42 in Logic and Machines: Decision Problems and Complexity (Münster, 1983), vol. 171 of Lecture Notes in Computer Science, Springer, Berlin, 1984.

3.

[3] S. Buss, Y. Chen, J. Flum, S.-D. Friedman, and M. Müller, “Strong isomorphism reductions in complexity theory,” Journal of Symbolic Logic, vol. 76 (2011), pp. 1381–1402. 1248.03060 10.2178/jsl/1318338855 euclid.jsl/1318338855 [3] S. Buss, Y. Chen, J. Flum, S.-D. Friedman, and M. Müller, “Strong isomorphism reductions in complexity theory,” Journal of Symbolic Logic, vol. 76 (2011), pp. 1381–1402. 1248.03060 10.2178/jsl/1318338855 euclid.jsl/1318338855

4.

[4] J. Finkelstein and B. Hescott, “Polynomial time kernel reductions,” preprint,  arxiv:1604.08558v1 [cs.CC]. 1604.08558v1[4] J. Finkelstein and B. Hescott, “Polynomial time kernel reductions,” preprint,  arxiv:1604.08558v1 [cs.CC]. 1604.08558v1

5.

[5] L. Fortnow and J. A. Grochow, “Complexity classes of equivalence problems revisited,” Information and Computation, vol. 209 (2011), pp. 748–63. 1238.68061 10.1016/j.ic.2011.01.006[5] L. Fortnow and J. A. Grochow, “Complexity classes of equivalence problems revisited,” Information and Computation, vol. 209 (2011), pp. 748–63. 1238.68061 10.1016/j.ic.2011.01.006

6.

[6] J. E. Hopcroft and R. E. Tarjan, “Isomorphism of planar graphs,” pp. 131–152, 187–212 in Complexity of Computer Computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), edited by R. E. Miller and J. W. Thatcher, Plenum, New York, 1972. 0436.05021[6] J. E. Hopcroft and R. E. Tarjan, “Isomorphism of planar graphs,” pp. 131–152, 187–212 in Complexity of Computer Computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), edited by R. E. Miller and J. W. Thatcher, Plenum, New York, 1972. 0436.05021

7.

[7] G. L. Miller, “Graph isomorphism, general remarks,” Journal of Computer and System Sciences, vol. 18 (1979), pp. 128–42. 0403.03029 10.1016/0022-0000(79)90043-6[7] G. L. Miller, “Graph isomorphism, general remarks,” Journal of Computer and System Sciences, vol. 18 (1979), pp. 128–42. 0403.03029 10.1016/0022-0000(79)90043-6

8.

[8] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Mass., 1994.[8] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Mass., 1994.
Copyright © 2017 University of Notre Dame
Su Gao and Caleb Ziegler "On Polynomial-Time Relation Reducibility," Notre Dame Journal of Formal Logic 58(2), 271-285, (2017). https://doi.org/10.1215/00294527-3867118
Received: 10 February 2014; Accepted: 29 September 2014; Published: 2017
Vol.58 • No. 2 • 2017
Back to Top