Open Access
Translator Disclaimer
2013 A Note on Freedom from Detachment in the Logic of Paradox
Jc Beall, Thomas Forster, Jeremy Seligman
Notre Dame J. Formal Logic 54(1): 15-20 (2013). DOI: 10.1215/00294527-1731353

Abstract

We shed light on an old problem by showing that the logic LP cannot define a binary connective obeying detachment in the sense that every valuation satisfying φ and ( φ ψ ) also satisfies ψ , except trivially. We derive this as a corollary of a more general result concerning variable sharing.

Citation

Download Citation

Jc Beall. Thomas Forster. Jeremy Seligman. "A Note on Freedom from Detachment in the Logic of Paradox." Notre Dame J. Formal Logic 54 (1) 15 - 20, 2013. https://doi.org/10.1215/00294527-1731353

Information

Published: 2013
First available in Project Euclid: 14 December 2012

zbMATH: 1272.03115
MathSciNet: MR3007958
Digital Object Identifier: 10.1215/00294527-1731353

Subjects:
Primary: 03B53
Secondary: 03B47 , 03B80

Keywords: detachable connective , detachment-free logics , LP , paraconsistent logic , Paradox , relevance logics , variable-sharing

Rights: Copyright © 2013 University of Notre Dame

JOURNAL ARTICLE
6 PAGES


SHARE
Vol.54 • No. 1 • 2013
Back to Top