Open Access
Summer 1997 Infima in the Recursively Enumerable Weak Truth Table Degrees
Rich Blaylock, Rod Downey, Steffen Lempp
Notre Dame J. Formal Logic 38(3): 406-418 (Summer 1997). DOI: 10.1305/ndjfl/1039700747

Abstract

We show that for every nontrivial r.e. wtt-degree a, there are r.e. wtt-degrees b and c incomparable to a such that the infimum of a and b exists but the infimum of a and c fails to exist. This shows in particular that there are no strongly noncappable r.e. wtt-degrees, in contrast to the situation in the r.e. Turing degrees.

Citation

Download Citation

Rich Blaylock. Rod Downey. Steffen Lempp. "Infima in the Recursively Enumerable Weak Truth Table Degrees." Notre Dame J. Formal Logic 38 (3) 406 - 418, Summer 1997. https://doi.org/10.1305/ndjfl/1039700747

Information

Published: Summer 1997
First available in Project Euclid: 12 December 2002

zbMATH: 0909.03038
MathSciNet: MR1624962
Digital Object Identifier: 10.1305/ndjfl/1039700747

Subjects:
Primary: 03D30

Rights: Copyright © 1997 University of Notre Dame

Vol.38 • No. 3 • Summer 1997
Back to Top