Open Access
June 2010 Motivic zeta functions for curve singularities
J. J. Moyano-Fernández, W. A. Zúñiga-Galindo
Nagoya Math. J. 198: 47-75 (June 2010). DOI: 10.1215/00277630-2009-007

Abstract

Let X be a complete, geometrically irreducible, singular, algebraic curve defined over a field of characteristic p big enough. Given a local ring OP,X at a rational singular point P of X, we attached a universal zeta function which is a rational function and admits a functional equation if OP,X is Gorenstein. This universal zeta function specializes to other known zeta functions and Poincaré series attached to singular points of algebraic curves. In particular, for the local ring attached to a complex analytic function in two variables, our universal zeta function specializes to the generalized Poincaré series introduced by Campillo, Delgado, and Gusein-Zade.

Citation

Download Citation

J. J. Moyano-Fernández. W. A. Zúñiga-Galindo. "Motivic zeta functions for curve singularities." Nagoya Math. J. 198 47 - 75, June 2010. https://doi.org/10.1215/00277630-2009-007

Information

Published: June 2010
First available in Project Euclid: 10 May 2010

zbMATH: 1252.14019
MathSciNet: MR2666577
Digital Object Identifier: 10.1215/00277630-2009-007

Subjects:
Primary: 14G10 , 14H20
Secondary: 11S40 , 32S40

Rights: Copyright © 2010 Editorial Board, Nagoya Mathematical Journal

Vol.198 • June 2010
Back to Top