Translator Disclaimer
2007 Base change of invariant subrings
Mitsuyasu Hashimoto
Nagoya Math. J. 186: 165-171 (2007).

Abstract

Let $R$ be a Dedekind domain, $G$ an affine flat $R$-group scheme, and $B$ a flat $R$-algebra on which $G$ acts. Let $A \rightarrow B^{G}$ be an $R$-algebra map. Assume that $A$ is Noetherian. We show that if the induced map $K \otimes A \rightarrow (K \otimes B)^{K \otimes G}$ is an isomorphism for any algebraically closed field $K$ which is an $R$-algebra, then $S \otimes A \rightarrow (S \otimes B)^{S \otimes G}$ is an isomorphism for any $R$-algebra $S$.

Citation

Download Citation

Mitsuyasu Hashimoto. "Base change of invariant subrings." Nagoya Math. J. 186 165 - 171, 2007.

Information

Published: 2007
First available in Project Euclid: 22 June 2007

zbMATH: 1124.13003
MathSciNet: MR2334369

Subjects:
Primary: 13A50

Rights: Copyright © 2007 Editorial Board, Nagoya Mathematical Journal

JOURNAL ARTICLE
7 PAGES


SHARE
Vol.186 • 2007
Back to Top