Open Access
2007 On the $K$-theory of the coordinate axes in the plane
Lars Hesselholt
Nagoya Math. J. 185: 93-109 (2007).

Abstract

Let $k$ a regular noetherian $\mathbb{F}_p$-algebra, let $A = k[x,y]/(xy)$ be the coordinate ring of the coordinate axes in the affine $k$-plane, and let $I = (x,y)$ be the ideal that defines the intersection point. We evaluate the relative $K$-groups $K_q(A,I)$ completely in terms of the big de Rham-Witt groups of $k$. This generalizes a formula for $K_1(A,I)$ and $K_2(A,I)$ by Dennis and Krusemeyer.

Citation

Download Citation

Lars Hesselholt. "On the $K$-theory of the coordinate axes in the plane." Nagoya Math. J. 185 93 - 109, 2007.

Information

Published: 2007
First available in Project Euclid: 23 March 2007

zbMATH: 1136.19002
MathSciNet: MR2301459

Subjects:
Primary: 19G50 , 19G55
Secondary: 11G20

Rights: Copyright © 2007 Editorial Board, Nagoya Mathematical Journal

Vol.185 • 2007
Back to Top