Open Access
2006 Tensor product structure of affine Demazure modules and limit constructions
G. Fourier, P. Littelmann
Nagoya Math. J. 182: 171-198 (2006).


Let $\mathfrak{g}$ be a simple complex Lie algebra, we denote by $\widehat{\mathfrak{g}}$ the affine Kac-Moody algebra associated to the extended Dynkin diagram of $\mathfrak{g}$. Let $\Lambda_{0}$ be the fundamental weight of $\widehat{\mathfrak{g}}$ corresponding to the additional node of the extended Dynkin diagram. For a dominant integral $\mathfrak{g}$-coweight $\lambda^{\vee}$, the Demazure submodule $V_{-\lambda^{\vee}}(m\Lambda_{0})$ is a $\mathfrak{g}$-module. We provide a description of the $\mathfrak{g}$-module structure as a tensor product of "smaller" Demazure modules. More precisely, for any partition of $\lambda^{\vee} = \sum_{j} \lambda_{j}^{\vee}$ as a sum of dominant integral $\mathfrak{g}$-coweights, the Demazure module is (as $\mathfrak{g}$-module) isomorphic to $\bigotimes_{j} V_{-\lambda^{\vee}_{j}}(m\Lambda_{0})$. For the "smallest" case, $\lambda^{\vee} = \omega^{\vee}$ a fundamental coweight, we provide for $\mathfrak{g}$ of classical type a decomposition of $V_{-\omega^{\vee}}(m\Lambda_{0})$ into irreducible $\mathfrak{g}$-modules, so this can be viewed as a natural generalization of the decomposition formulas in [13] and [16]. A comparison with the $U_{q}(\mathfrak{g})$-characters of certain finite dimensional $U_{q}'(\widehat{\mathfrak{g}})$-modules (Kirillov-Reshetikhin-modules) suggests furthermore that all quantized Demazure modules $V_{-\lambda^{\vee}, q}(m\Lambda_{0})$ can be naturally endowed with the structure of a $U_{q}'(\widehat{\mathfrak{g}})$-module. We prove, in the classical case (and for a lot of non-classical cases), a conjecture by Kashiwara [10], that the "smallest" Demazure modules are, when viewed as $\mathfrak{g}$-modules, isomorphic to some KR-modules. For an integral dominant $\widehat{\mathfrak{g}}$-weight $\Lambda$ let $V(\Lambda)$ be the corresponding irreducible $\widehat{\mathfrak{g}}$-representation. Using the tensor product decomposition for Demazure modules, we give a description of the $\mathfrak{g}$-module structure of $V(\Lambda)$ as a semi-infinite tensor product of finite dimensional $\mathfrak{g}$-modules. The case of twisted affine Kac-Moody algebras can be treated in the same way, some details are worked out in the last section.


Download Citation

G. Fourier. P. Littelmann. "Tensor product structure of affine Demazure modules and limit constructions." Nagoya Math. J. 182 171 - 198, 2006.


Published: 2006
First available in Project Euclid: 20 June 2006

zbMATH: 1143.22010
MathSciNet: MR2235341

Primary: 14M15 , 22E46

Rights: Copyright © 2006 Editorial Board, Nagoya Mathematical Journal

Vol.182 • 2006
Back to Top