Abstract
We denote by $FPMC$ the class of all non-singular projective algebraic surfaces $X$ over $\mathbb{c}$ with finite polyhedral Mori cone $NE(X)$ $\subset NS(X)\otimes \mathbb{R}$. If $\rho(X)=rk \,\, NS(X)\ge 3$, then the set Exc$(X)$ of all exceptional curves on $X\in FPMC$ is finite and generates NE$(X)$. Let $\delta_E(X)$ be the maximum of $(-C^2)$ and $p_E(X)$ the maximum of $p_a(C)$ respectively for all $C\in \,$Exc$(X)$. For fixed $\rho\ge 3$, $\delta_E$ and $p_E$ we denote by $FPMC_{\rho,\delta_E,p_E}$ the class of all algebraic surfaces $X\in FPMC$ such that $\rho(X)=\rho$, $\delta_E(X)=\delta_E$ and $p_E(X)=p_E$. We prove that the class $FPMC_{\rho,\delta_E,p_E}$ is bounded in the following sense: for any $X\in FPMC_{\rho,\delta_E,p_E}$ there exist an ample effective divisor $h$ and a very ample divisor $h'$ such that $h^2\le N(\rho,\,\delta_E)$ and ${h'}^2\le N'(\rho,\,\delta_E,\,p_E)$ where the constants $N(\rho,\,\delta_E)$ and $N'(\rho,\,\delta_E,\,p_E)$ depend only on $\rho,\,\delta_E$ and $\rho,\,\delta_E,\,p_E$ respectively.
One can consider Theory of surfaces $X\in FPMC$ as Algebraic Geometry analog of the Theory of arithmetic reflection groups in hyperbolic spaces.
Citation
Viacheslav V. Nikulin. "A remark on algebraic surfaces with polyhedral Mori cone." Nagoya Math. J. 157 73 - 92, 2000.
Information