Open Access
1999 Moduli spaces of vector bundles over ruled surfaces
Marian Aprodu, Vasile Brînzănescu
Nagoya Math. J. 154: 111-122 (1999).


We study moduli spaces $M(c_1,c_2,d,r)$ of isomorphism classes of algebraic 2-vector bundles with fixed numerical invariants $c_1,c_2,d,r$ over a ruled surface. These moduli spaces are independent of any ample line bundle on the surface. The main result gives necessary and sufficient conditions for the non-emptiness of the space $M(c_1,c_2,d,r)$ and we apply this result to the moduli spaces ${\cal M}_L(c_1,c_2)$ of stable bundles, where $L$ is an ample line bundle on the ruled surface.


Download Citation

Marian Aprodu. Vasile Brînzănescu. "Moduli spaces of vector bundles over ruled surfaces." Nagoya Math. J. 154 111 - 122, 1999.


Published: 1999
First available in Project Euclid: 27 April 2005

zbMATH: 0938.14024
MathSciNet: MR1689175

Primary: 14J60
Secondary: 14J26

Rights: Copyright © 1999 Editorial Board, Nagoya Mathematical Journal

Vol.154 • 1999
Back to Top