Abstract
We construct a three-parameter family of nonhyperelliptic and bielliptic plane genus-three curves whose associated Prym variety is two-isogenous to the Jacobian variety of a general hyperelliptic genus-two curve. Our construction is based on the existence of special elliptic fibrations with the section on the associated Kummer surfaces that provide a simple geometric interpretation for the rational double cover induced by the two-isogeny between the Abelian surfaces.
Citation
Adrian Clingher. Andreas Malmendier. Tony Shaska. "On Isogenies Among Certain Abelian Surfaces." Michigan Math. J. 71 (2) 227 - 269, May 2022. https://doi.org/10.1307/mmj/20195790
Information