August 2023 Symplectic birational transformations of finite order on O’Grady’s sixfolds
Annalisa Grossi, Claudio Onorati, Davide Cesare Veniani
Author Affiliations +
Kyoto J. Math. 63(3): 615-639 (August 2023). DOI: 10.1215/21562261-10577928

Abstract

We prove that any symplectic automorphism of finite order on a manifold of type OG6 acts trivially on the Beauville–Bogomolov–Fujiki lattice and that any birational transformation of finite order acts trivially on its discriminant group. Moreover, we classify all possible invariant and coinvariant sublattices.

Citation

Download Citation

Annalisa Grossi. Claudio Onorati. Davide Cesare Veniani. "Symplectic birational transformations of finite order on O’Grady’s sixfolds." Kyoto J. Math. 63 (3) 615 - 639, August 2023. https://doi.org/10.1215/21562261-10577928

Information

Received: 4 May 2021; Revised: 6 October 2021; Accepted: 25 October 2021; Published: August 2023
First available in Project Euclid: 4 May 2023

MathSciNet: MR4622482
zbMATH: 07713916
Digital Object Identifier: 10.1215/21562261-10577928

Subjects:
Primary: 14J42
Secondary: 14E07 , 14J50

Keywords: irreducible holomorphic symplectic manifolds , symplectic automorphisms , symplectic birational transformations

Rights: Copyright © 2023 by Kyoto University

Vol.63 • No. 3 • August 2023
Back to Top