Open Access
Fall 2014 On the eigenfunctions of the complex Ornstein–Uhlenbeck operators
Yong Chen, Yong Liu
Kyoto J. Math. 54(3): 577-596 (Fall 2014). DOI: 10.1215/21562261-2693451

Abstract

Starting from the 1-dimensional complex-valued Ornstein–Uhlenbeck process, we present two natural ways to obtain the associated eigenfunctions of the 2-dimensional normal Ornstein–Uhlenbeck operator in the complex Hilbert space LC2(μ). We call the eigenfunctions Hermite–Laguerre–Itô polynomials. In addition, the Mehler summation formula for the complex process is shown.

Citation

Download Citation

Yong Chen. Yong Liu. "On the eigenfunctions of the complex Ornstein–Uhlenbeck operators." Kyoto J. Math. 54 (3) 577 - 596, Fall 2014. https://doi.org/10.1215/21562261-2693451

Information

Published: Fall 2014
First available in Project Euclid: 14 August 2014

zbMATH: 1310.60073
MathSciNet: MR3263553
Digital Object Identifier: 10.1215/21562261-2693451

Subjects:
Primary: 60H07
Secondary: 60G15 , 60H10

Rights: Copyright © 2014 Kyoto University

Vol.54 • No. 3 • Fall 2014
Back to Top