Open Access
Winter 2012 A metric linear space is an open cone
George Michael
Kyoto J. Math. 52(4): 833-838 (Winter 2012). DOI: 10.1215/21562261-1728893

Abstract

In this paper we show that a metrizable topological vector space over R is topologically an open cone. This generalizes the partial results obtained by Henderson.

Citation

Download Citation

George Michael. "A metric linear space is an open cone." Kyoto J. Math. 52 (4) 833 - 838, Winter 2012. https://doi.org/10.1215/21562261-1728893

Information

Published: Winter 2012
First available in Project Euclid: 15 November 2012

zbMATH: 1262.57024
MathSciNet: MR2998914
Digital Object Identifier: 10.1215/21562261-1728893

Subjects:
Primary: 57N17
Secondary: ‎57N20‎

Rights: Copyright © 2012 Kyoto University

Vol.52 • No. 4 • Winter 2012
Back to Top