Open Access
Spring 2012 On mod p nonvanishing of special values of L-functions associated with cusp forms on GL2 over imaginary quadratic fields
Kenichi Namikawa
Kyoto J. Math. 52(1): 117-140 (Spring 2012). DOI: 10.1215/21562261-1503782

Abstract

Let f be a cusp form on GL2 over an imaginary quadratic field F of class number 1, and let p be an odd prime which satisfies some mild conditions. Then we show the existence of a finite-order Hecke character φ of FA× such that the algebraic part of the special value of L-functions of fφ at s=1 is a p-adic unit. This is an analogous result to the result of A. Ash and G. Stevens for GL2 over the field of rationals obtained in [AS].

Citation

Download Citation

Kenichi Namikawa. "On mod p nonvanishing of special values of L-functions associated with cusp forms on GL2 over imaginary quadratic fields." Kyoto J. Math. 52 (1) 117 - 140, Spring 2012. https://doi.org/10.1215/21562261-1503782

Information

Published: Spring 2012
First available in Project Euclid: 19 February 2012

zbMATH: 1284.11087
MathSciNet: MR2892770
Digital Object Identifier: 10.1215/21562261-1503782

Subjects:
Primary: 11F41 , 11F67 , 14G10

Rights: Copyright © 2012 Kyoto University

Vol.52 • No. 1 • Spring 2012
Back to Top