Open Access
2005 On dense orbits in the boundary of a Coxeter system
Tetsuya Hosaka
J. Math. Kyoto Univ. 45(3): 627-631 (2005). DOI: 10.1215/kjm/1250281975

Abstract

In this paper, we study the minimality of the boundary of a Coxeter system. We show that for a Coxeter system $(W, S)$ if there exist a maximal spherical subset $T$ of $S$ and an element $s_{0} \in S$ such that $m(s_{0}, t) \geq 3$ for each $t \in T$ and $m(s_{0}, t_{0}) = \infty$ for some $t_{0} \in T$, then every orbit $W\alpha$ is dense in the boundary $\partial \Sigma (W, S)$ of the Coxeter system $(W, S)$, hence $\partial \Sigma (W, S)$ is minimal, where $m(s_{0}, t)$ is the order of $s_{0}t$ in $W$.

Citation

Download Citation

Tetsuya Hosaka. "On dense orbits in the boundary of a Coxeter system." J. Math. Kyoto Univ. 45 (3) 627 - 631, 2005. https://doi.org/10.1215/kjm/1250281975

Information

Published: 2005
First available in Project Euclid: 14 August 2009

zbMATH: 1098.57002
MathSciNet: MR2206364
Digital Object Identifier: 10.1215/kjm/1250281975

Subjects:
Primary: 57M07
Secondary: 20F55 , 20F65

Rights: Copyright © 2005 Kyoto University

Vol.45 • No. 3 • 2005
Back to Top