Abstract
In this paper, we study unit tangent sphere bundles T1M whose Ricci operator $\bar{S}$ is Reeb flow invariant, that is, Lξ$\bar{S}$ = 0. We prove that for a 3-dimensional Riemannian manifold M, T1M satisfies Lξ$\bar{S}$ = 0 if and only if M is of constant curvature 1. Also, we prove that for a 4-dimensional Riemannian manifold M, T1M satisfies Lξ $\bar{S}$ = 0 and ℓ$\bar{S}$ξ = 0 if and only if M is of constant curvature 1 or 2, where ℓ = $\bar{R}$(·,ξ)ξ is the characteristic Jacobi operator.
Citation
Jong Taek Cho. Sun Hyang Chun. "Unit tangent sphere bundles with the Reeb flow invariant Ricci operator." Kodai Math. J. 40 (1) 102 - 116, March 2017. https://doi.org/10.2996/kmj/1490083226
Information