Open Access
April, 2018 Spaces of nonnegatively curved surfaces
Taras BANAKH, Igor BELEGRADEK
J. Math. Soc. Japan 70(2): 733-756 (April, 2018). DOI: 10.2969/jmsj/07027344

Abstract

We determine the homeomorphism type of the space of smooth complete nonnegatively curved metrics on $S^2$, $RP^2$, and $\mathbb{C}$ equipped with the topology of $C^\gamma$ uniform convergence on compact sets, when $\gamma$ is infinite or is not an integer. If $\gamma=\infty$, the space of metrics is homeomorphic to the separable Hilbert space. If $\gamma$ is finite and not an integer, the space of metrics is homeomorphic to the countable power of the linear span of the Hilbert cube. We also prove similar results for some other spaces of metrics including the space of complete smooth Riemannian metrics on an arbitrary manifold.

Citation

Download Citation

Taras BANAKH. Igor BELEGRADEK. "Spaces of nonnegatively curved surfaces." J. Math. Soc. Japan 70 (2) 733 - 756, April, 2018. https://doi.org/10.2969/jmsj/07027344

Information

Published: April, 2018
First available in Project Euclid: 18 April 2018

zbMATH: 06902440
MathSciNet: MR3787738
Digital Object Identifier: 10.2969/jmsj/07027344

Subjects:
Primary: 53C21
Secondary: ‎57N20‎

Keywords: absorbing , infinite dimensional topology , nonnegative curvature , space of metrics

Rights: Copyright © 2018 Mathematical Society of Japan

Vol.70 • No. 2 • April, 2018
Back to Top