Open Access
January, 2018 Topology of mixed hypersurfaces of cyclic type
Kazumasa INABA, Masayuki KAWASHIMA, Mutsuo OKA
J. Math. Soc. Japan 70(1): 387-402 (January, 2018). DOI: 10.2969/jmsj/07017538

Abstract

Let $f_{II}({\boldsymbol{z}}, \bar{{\boldsymbol{z}}}) = z_{1}^{a_{1}+b_{1}}\bar{z}_{1}^{b_{1}}z_{2} + \cdots + z_{n-1}^{a_{n-1}+b_{n-1}}\bar{z}_{n-1}^{b_{n-1}}z_{n} + z_{n}^{a_{n}+b_{n}}\bar{z}_{n}^{b_{n}}z_{1}$ be a mixed weighted homogeneous polynomial of cyclic type and $g_{II}({\boldsymbol{z}}) = z_{1}^{a_{1}}z_{2} + \cdots + z_{n-1}^{a_{n-1}}z_{n} + z_{n}^{a_{n}}z_{1}$ be the associated weighted homogeneous polynomial where $a_{j} \geq 1$ and $b_{j} \geq 0$ for $j = 1, \dots, n$. We show that two links $S^{2n-1}_{\varepsilon} \cap f_{II}^{-1}(0)$ and $S^{2n-1}_{\varepsilon} \cap g_{II}^{-1}(0)$ are diffeomorphic and their Milnor fibrations are isomorphic.

Citation

Download Citation

Kazumasa INABA. Masayuki KAWASHIMA. Mutsuo OKA. "Topology of mixed hypersurfaces of cyclic type." J. Math. Soc. Japan 70 (1) 387 - 402, January, 2018. https://doi.org/10.2969/jmsj/07017538

Information

Published: January, 2018
First available in Project Euclid: 26 January 2018

zbMATH: 06859857
MathSciNet: MR3750281
Digital Object Identifier: 10.2969/jmsj/07017538

Subjects:
Primary: 14J17
Secondary: 14J70 , 58K05

Keywords: Milnor fibration , polar weighted homogeneous

Rights: Copyright © 2018 Mathematical Society of Japan

Vol.70 • No. 1 • January, 2018
Back to Top