Open Access
April, 2016 Universal curvature identities and Euler–Lagrange formulas for Kähler manifolds
Peter B. GILKEY, JeongHyeong PARK, Kouei SEKIGAWA
J. Math. Soc. Japan 68(2): 459-487 (April, 2016). DOI: 10.2969/jmsj/06820459

Abstract

We relate certain universal curvature identities for Kähler manifolds to the Euler–Lagrange equations of the scalar invariants which are defined by pairing characteristic forms with powers of the Kähler form.

Citation

Download Citation

Peter B. GILKEY. JeongHyeong PARK. Kouei SEKIGAWA. "Universal curvature identities and Euler–Lagrange formulas for Kähler manifolds." J. Math. Soc. Japan 68 (2) 459 - 487, April, 2016. https://doi.org/10.2969/jmsj/06820459

Information

Published: April, 2016
First available in Project Euclid: 15 April 2016

zbMATH: 1353.53024
MathSciNet: MR3488133
Digital Object Identifier: 10.2969/jmsj/06820459

Subjects:
Primary: 53B35
Secondary: 57R20

Keywords: Euler–Lagrange formulas , Kähler manifolds , universal curvature identities

Rights: Copyright © 2016 Mathematical Society of Japan

Vol.68 • No. 2 • April, 2016
Back to Top