Open Access
Translator Disclaimer
April, 2016 Long time existence of classical solutions for the 3D incompressible rotating Euler equations
Ryo TAKADA
J. Math. Soc. Japan 68(2): 579-608 (April, 2016). DOI: 10.2969/jmsj/06820579

Abstract

We consider the initial value problem of the 3D incompressible rotating Euler equations. We prove the long time existence of classical solutions for initial data in $H^s(\mathbb{R}^3)$ with $s$ > 5/2. Also, we give an upper bound of the minimum speed of rotation for the long time existence when initial data belong to $H^{7/2}(\mathbb{R}^3)$.

Citation

Download Citation

Ryo TAKADA. "Long time existence of classical solutions for the 3D incompressible rotating Euler equations." J. Math. Soc. Japan 68 (2) 579 - 608, April, 2016. https://doi.org/10.2969/jmsj/06820579

Information

Published: April, 2016
First available in Project Euclid: 15 April 2016

zbMATH: 1338.35346
MathSciNet: MR3488136
Digital Object Identifier: 10.2969/jmsj/06820579

Subjects:
Primary: 76U05
Secondary: 76B03

Keywords: long time existence , the 3D Euler equations , the Coriolis force

Rights: Copyright © 2016 Mathematical Society of Japan

JOURNAL ARTICLE
30 PAGES


SHARE
Vol.68 • No. 2 • April, 2016
Back to Top