Open Access
April, 2015 Twisting the $q$-deformations of compact semisimple Lie groups
Sergey NESHVEYEV, Makoto YAMASHITA
J. Math. Soc. Japan 67(2): 637-662 (April, 2015). DOI: 10.2969/jmsj/06720637

Abstract

Given a compact semisimple Lie group $G$ of rank $r$, and a parameter $q$ > 0, we can define new associativity morphisms in ${\rm Rep}(G_q)$ using a $3$-cocycle $\Phi$ on the dual of the center of $G$, thus getting a new tensor category ${\rm Rep}(G_q)^\Phi$. For a class of cocycles $\Phi$ we construct compact quantum groups $G^\tau_q$ with representation categories ${\rm Rep}(G_q)^\Phi$. The construction depends on the choice of an $r$-tuple $\tau$ of elements in the center of $G$. In the simplest case of $G=SU(2)$ and $\tau=-1$, our construction produces Woronowicz's quantum group $SU_{-q}(2)$ out of $SU_q(2)$. More generally, for $G=SU(n)$, we get quantum group realizations of the Kazhdan–Wenzl categories.

Citation

Download Citation

Sergey NESHVEYEV. Makoto YAMASHITA. "Twisting the $q$-deformations of compact semisimple Lie groups." J. Math. Soc. Japan 67 (2) 637 - 662, April, 2015. https://doi.org/10.2969/jmsj/06720637

Information

Published: April, 2015
First available in Project Euclid: 21 April 2015

zbMATH: 1333.46059
MathSciNet: MR3340190
Digital Object Identifier: 10.2969/jmsj/06720637

Subjects:
Primary: 17B37
Secondary: 18D10

Keywords: $q$-deformation , compact quantum group , tensor category

Rights: Copyright © 2015 Mathematical Society of Japan

Vol.67 • No. 2 • April, 2015
Back to Top