Open Access
Translator Disclaimer
October, 2009 Extension dimension of a wide class of spaces
Ivan IVANŠIĆ, Leonard R. RUBIN
J. Math. Soc. Japan 61(4): 1097-1110 (October, 2009). DOI: 10.2969/jmsj/06141097


We prove the existence of extension dimension for a much expanded class of spaces. First we obtain several theorems which state conditions on a polyhedron or CW -complex K and a space X in order that X be an absolute co-extensor for K . Then we prove the existence of and describe a wedge representative of extension dimension for spaces in a wide class relative to polyhedra or CW -complexes. We also obtain a result on the existence of a “countable” representative of the extension dimension of a Hausdorff compactum.


Download Citation

Ivan IVANŠIĆ. Leonard R. RUBIN. "Extension dimension of a wide class of spaces." J. Math. Soc. Japan 61 (4) 1097 - 1110, October, 2009.


Published: October, 2009
First available in Project Euclid: 6 November 2009

zbMATH: 1182.54023
MathSciNet: MR2588505
Digital Object Identifier: 10.2969/jmsj/06141097

Primary: 54C20 , 54C55

Keywords: $\sigma$-compactum , $\sigma$-pseudo-compactum , absolute co-extensor , absolute extensor , anti-basis , cardinality of a complex , CW-complex , ddP-space , dd-space , extension dimension , extension theory , extension type , Hausdorff $\sigma$-compactum , polyhedron , pseudo-compact , weak extension dimension , weight

Rights: Copyright © 2009 Mathematical Society of Japan


Vol.61 • No. 4 • October, 2009
Back to Top