Open Access
October, 2008 On vanishing of certain Ext modules
Shiro GOTO, Futoshi HAYASAKA, Ryo TAKAHASHI
J. Math. Soc. Japan 60(4): 1045-1064 (October, 2008). DOI: 10.2969/jmsj/06041045

Abstract

Let R be a Noetherian local ring with the maximal ideal m and dimR=1 . In this paper, we shall prove that the module Ext R 1 (R/Q,R) does not vanish for every parameter ideal Q in R , if the embedding dimension v(R) of R is at most 4 and the ideal m 2 kills the 0 th ¯ local cohomology module H m 0 (R) . The assertion is no longer true unless v(R)4 . Counterexamples are given. We shall also discuss the relation between our counterexamples and a problem on modules of finite G-dimension.

Citation

Download Citation

Shiro GOTO. Futoshi HAYASAKA. Ryo TAKAHASHI. "On vanishing of certain Ext modules." J. Math. Soc. Japan 60 (4) 1045 - 1064, October, 2008. https://doi.org/10.2969/jmsj/06041045

Information

Published: October, 2008
First available in Project Euclid: 5 November 2008

zbMATH: 1158.13005
MathSciNet: MR2467869
Digital Object Identifier: 10.2969/jmsj/06041045

Subjects:
Primary: 13D07
Secondary: 13D05

Keywords: G-dimension , parameter ideal , vanishing of Ext

Rights: Copyright © 2008 Mathematical Society of Japan

Vol.60 • No. 4 • October, 2008
Back to Top