Open Access
October, 2006 Sous-algèbres de Cartan des algèbres de Kac-Moody réelles presque déployées
Hechmi BEN MESSAOUD, Guy ROUSSEAU
J. Math. Soc. Japan 58(4): 1009-1030 (October, 2006). DOI: 10.2969/jmsj/1179759535

Abstract

The classification of almost split real forms of symmetrizable Kac-Moody Lie algebras is a rather straightforward infinite-dimensional generalization of the classification of real semi-simple Lie algebras in terms of the Tits index [J. Algebra, 171, 43--96 (1995)]. We study here the conjugate classes of their Cartan subalgebras under the adjoint groups or the full automorphism groups. Maximally split Cartan subalgebras of an almost split real Kac-Moody Lie algebra are mutually conjugate and one can generalize the Sugiura classification (given for real semi-simple Lie algebras) by comparing any Cartan subalgebra to a standard maximally split one. As in the classical case, we prove that the number of conjugate classes of Cartan subalgebras is always finite.

Citation

Download Citation

Hechmi BEN MESSAOUD. Guy ROUSSEAU. "Sous-algèbres de Cartan des algèbres de Kac-Moody réelles presque déployées." J. Math. Soc. Japan 58 (4) 1009 - 1030, October, 2006. https://doi.org/10.2969/jmsj/1179759535

Information

Published: October, 2006
First available in Project Euclid: 21 May 2007

zbMATH: 1121.17014
Digital Object Identifier: 10.2969/jmsj/1179759535

Subjects:
Primary: 17B67

Keywords: algèbre de Kac-Moody , forme réelle presque déployée , sous-algèbre de Cartan

Rights: Copyright © 2006 Mathematical Society of Japan

Vol.58 • No. 4 • October, 2006
Back to Top