Open Access
April, 2006 Odd primary Steenrod algebra, additive formal group laws, and modular invariants
Masateru INOUE
J. Math. Soc. Japan 58(2): 311-332 (April, 2006). DOI: 10.2969/jmsj/1149166777

Abstract

We give a conceptual clarification of Milnor's theorem, which tells us the Hopf algebra structure of the stable co-operations H * H in the odd primary ordinary cohomology. Directly connecting H * H with the quasi-strict automorphism group of some 1 -dimensional additive formal group law and modular invariants, we give a new proof of this theorem of Milnor.

Citation

Download Citation

Masateru INOUE. "Odd primary Steenrod algebra, additive formal group laws, and modular invariants." J. Math. Soc. Japan 58 (2) 311 - 332, April, 2006. https://doi.org/10.2969/jmsj/1149166777

Information

Published: April, 2006
First available in Project Euclid: 1 June 2006

zbMATH: 1104.55007
MathSciNet: MR2228561
Digital Object Identifier: 10.2969/jmsj/1149166777

Subjects:
Primary: 55S10
Secondary: 55N22 , 55P20

Keywords: Eilenberg-MacLane spectrum , formal group laws , modular invariants , multiplicative operations , reduced power operations , Steenrod algebra

Rights: Copyright © 2006 Mathematical Society of Japan

Vol.58 • No. 2 • April, 2006
Back to Top