Open Access
JANUARY, 2006 Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems
Pier Domenico LAMBERTI, Massimo LANZA DE CRISTOFORIS
J. Math. Soc. Japan 58(1): 231-245 (JANUARY, 2006). DOI: 10.2969/jmsj/1145287100

Abstract

We consider the Dirichlet and the Neumann eigenvalue problem for the Laplace operator on a variable nonsmooth domain, and we prove that the elementary symmetric functions of the eigenvalues splitting from a given eigenvalue upon domain deformation have a critical point at a domain with the shape of a ball. Correspondingly, we formulate overdetermined boundary value problems of the type of the Schiffer conjecture.

Citation

Download Citation

Pier Domenico LAMBERTI. Massimo LANZA DE CRISTOFORIS. "Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems." J. Math. Soc. Japan 58 (1) 231 - 245, JANUARY, 2006. https://doi.org/10.2969/jmsj/1145287100

Information

Published: JANUARY, 2006
First available in Project Euclid: 17 April 2006

zbMATH: 1099.35070
MathSciNet: MR2204572
Digital Object Identifier: 10.2969/jmsj/1145287100

Subjects:
Primary: 35N05 , 35P15 , 47H30

Keywords: Dirichlet and Neumann eigenvalues and eigenfunctions , domain perturbation , Laplace operator , overdetermined problems , special nonlinear operators

Rights: Copyright © 2006 Mathematical Society of Japan

Vol.58 • No. 1 • JANUARY, 2006
Back to Top