Open Access
October, 2005 Convolution of Riemann zeta-values
Shigeru KANEMITSU, Yoshio TANIGAWA, Masami YOSHIMOTO
J. Math. Soc. Japan 57(4): 1167-1177 (October, 2005). DOI: 10.2969/jmsj/1150287308

Abstract

In this note we are going to generalize Prudnikov's method of using a double integral to deduce relations between the Riemann zeta-values, so as to prove intriguing relations between double zeta-values of depth 2. Prior to this, we shall deduce the most well-known relation that expresses the sum j = 1 m - 2 ζ ( j + 1 ) ζ ( m - j ) in terms of ζ 2 ( 1 , m ) .

Citation

Download Citation

Shigeru KANEMITSU. Yoshio TANIGAWA. Masami YOSHIMOTO. "Convolution of Riemann zeta-values." J. Math. Soc. Japan 57 (4) 1167 - 1177, October, 2005. https://doi.org/10.2969/jmsj/1150287308

Information

Published: October, 2005
First available in Project Euclid: 14 June 2006

zbMATH: 1092.11037
MathSciNet: MR2183588
Digital Object Identifier: 10.2969/jmsj/1150287308

Subjects:
Primary: 11M06
Secondary: 11M41

Keywords: Euler-Zagier sum , Mellin transform , Riemann zeta-values

Rights: Copyright © 2005 Mathematical Society of Japan

Vol.57 • No. 4 • October, 2005
Back to Top