Open Access
April, 2005 Algebraic structures on quasi-primary states in superconformal algebras
Go YAMAMOTO
J. Math. Soc. Japan 57(2): 309-332 (April, 2005). DOI: 10.2969/jmsj/1158242061

Abstract

Operator Product Expansions give algebraic structures on subspaces of quasi-primary vectors in superconformal algebras. The structures characterize the structures of superconformal algebras if they meet a criteria, while in some cases the spaces of quasi-primary vectors are finite dimensional. As an application the complete list of simple physical conformal superalgebras is given by classifying the corresponding algebraic structures on finite dimensional vector spaces. The list contains a one-parameter family of superconformal algebras with 4 supercharges that is simple for general values.

Citation

Download Citation

Go YAMAMOTO. "Algebraic structures on quasi-primary states in superconformal algebras." J. Math. Soc. Japan 57 (2) 309 - 332, April, 2005. https://doi.org/10.2969/jmsj/1158242061

Information

Published: April, 2005
First available in Project Euclid: 14 September 2006

zbMATH: 1082.81047
MathSciNet: MR2123235
Digital Object Identifier: 10.2969/jmsj/1158242061

Subjects:
Primary: 81R05
Secondary: 17B68 , 81R10

Keywords: Lie algebra , Operator Product Expansion , Superconformal algebra , Virasoro algebra

Rights: Copyright © 2005 Mathematical Society of Japan

Vol.57 • No. 2 • April, 2005
Back to Top