Open Access
April, 2003 Harmonic functions on finitely sheeted unlimited covering surfaces
Hiroaki MASAOKA, Shigeo SEGAWA
J. Math. Soc. Japan 55(2): 323-334 (April, 2003). DOI: 10.2969/jmsj/1191419119

Abstract

We denote by HP(R) and (HB(R), resp.) the class of positive (bounded, resp.) harmonic functions on a Riemann surface R. Consider an open Riemann surface W possessing a Green's function and a p-sheeted (1<p<) unlimited covering surface W˜ of W with projection map ϕ. We give a necessary and sufficient condition, in terms of Martin boundary, for HX(W)ϕ=HX(W˜)(X=P,B). We also give some examples illustrating the above result when W is the unit disc.

Citation

Download Citation

Hiroaki MASAOKA. Shigeo SEGAWA. "Harmonic functions on finitely sheeted unlimited covering surfaces." J. Math. Soc. Japan 55 (2) 323 - 334, April, 2003. https://doi.org/10.2969/jmsj/1191419119

Information

Published: April, 2003
First available in Project Euclid: 3 October 2007

zbMATH: 1046.30026
MathSciNet: MR1961289
Digital Object Identifier: 10.2969/jmsj/1191419119

Subjects:
Primary: 30F15 , 30F25 , 31C35

Keywords: Bounded harmonic function , Martin boundary , positive harmonic function , Unlimited covering surface

Rights: Copyright © 2003 Mathematical Society of Japan

Vol.55 • No. 2 • April, 2003
Back to Top