Open Access
Translator Disclaimer
October, 1999 Abel's theorem for divisors on an arbitrary compact complex manifold
Yasuo NAGASHIMA
J. Math. Soc. Japan 51(4): 1015-1028 (October, 1999). DOI: 10.2969/jmsj/05141015

Abstract

We prove Abel's theorem for divisors on an arbitrary compact complex manifold by combining the Čech cohomology of sheaves, a logarithmic residue formula for 1-forms and de Rham's theory applied to open submanifolds.

Citation

Download Citation

Yasuo NAGASHIMA. "Abel's theorem for divisors on an arbitrary compact complex manifold." J. Math. Soc. Japan 51 (4) 1015 - 1028, October, 1999. https://doi.org/10.2969/jmsj/05141015

Information

Published: October, 1999
First available in Project Euclid: 10 June 2008

zbMATH: 0943.32004
MathSciNet: MR1705258
Digital Object Identifier: 10.2969/jmsj/05141015

Subjects:
Primary: 32A20
Secondary: 32C30 , 58A12

Keywords: de Rham's theory , logarithmic residue formula , meromorphic function

Rights: Copyright © 1999 Mathematical Society of Japan

JOURNAL ARTICLE
14 PAGES


SHARE
Vol.51 • No. 4 • October, 1999
Back to Top