Open Access
December 2014 GKM-sheaves and nonorientable surface group representations
Thomas Baird
J. Symplectic Geom. 12(4): 867-921 (December 2014).

Abstract

Let $T$ be a compact torus and $X$ a nice compact $T$-space (say a manifold or variety). We introduce a functor assigning to $X$ a GKM-sheaf $\mathcal{F}_X$ over a GKM-hypergraph $\Gamma_X$. Under the condition that $X$ is equivariantly formal, the ring of global sections of $\mathcal{F}_X$ are identified with the equivariant cohomology, $H^*_T (X; \mathbb{C}) \cong H^0(\mathcal{F}_X)$. We show that GKM-sheaves provide a general framework able to incorporate numerous constructions in the GKM-theory literature. In the second half of the paper we apply these ideas to study the equivariant topology of the representation variety $\mathcal{R}K := \mathrm{Hom}(\pi_1 (\Sigma),K)$ under conjugation by $K$, where $\Sigma$ is a nonorientable surface and $K$ is a compact connected Lie group. We prove that $\mathcal{R}_{SU(3)}$ is equivariantly formal for all $\Sigma$ and compute its equivariant cohomology ring. We also produce conjectural betti number formulas for some other Lie groups.

Citation

Download Citation

Thomas Baird. "GKM-sheaves and nonorientable surface group representations." J. Symplectic Geom. 12 (4) 867 - 921, December 2014.

Information

Published: December 2014
First available in Project Euclid: 1 June 2015

zbMATH: 1329.55004
MathSciNet: MR3333031

Rights: Copyright © 2014 International Press of Boston

Vol.12 • No. 4 • December 2014
Back to Top