September 2013 Diagonally non-computable functions and bi-immunity
Jr., Carl G. Jockusch, Andrew E. M. Lewis
J. Symbolic Logic 78(3): 977-988 (September 2013). DOI: 10.2178/jsl.7803150

Abstract

We prove that every diagonally noncomputable function computes a set $A$ which is bi-immune, meaning that neither $A$ nor its complement has an infinite computably enumerable subset.

Citation

Download Citation

Jr., Carl G. Jockusch. Andrew E. M. Lewis. "Diagonally non-computable functions and bi-immunity." J. Symbolic Logic 78 (3) 977 - 988, September 2013. https://doi.org/10.2178/jsl.7803150

Information

Published: September 2013
First available in Project Euclid: 6 January 2014

zbMATH: 1345.03081
MathSciNet: MR3135508
Digital Object Identifier: 10.2178/jsl.7803150

Subjects:
Primary: 03D28

Rights: Copyright © 2013 Association for Symbolic Logic

JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.78 • No. 3 • September 2013
Back to Top