Abstract
Let A be an infinite Δ₂⁰ set and let K be creative: we show that K≤Q A if and only if K≤Q₁ A. (Here ≤Q denotes Q-reducibility, and ≤Q₁ is the subreducibility of ≤Q obtained by requesting that Q-reducibility be provided by a computable function f such that Wf(x)∩ Wf(y)=∅, if x \not= y.) Using this result we prove that A is hyperhyperimmune if and only if no Δ⁰₂ subset B of A is s-complete, i.e., there is no Δ⁰₂ subset B of A such that \overline{K}≤s B, where ≤s denotes s-reducibility, and \overline{K} denotes the complement of K.
Citation
Roland Sh. Omanadze. Andrea Sorbi. "A characterization of the Δ⁰₂ hyperhyperimmune sets." J. Symbolic Logic 73 (4) 1407 - 1415, December 2008. https://doi.org/10.2178/jsl/1230396928
Information