Abstract
A version of the Erdős-Rado theorem on partitions of the unordered n-tuples from uncountable sets is proved, without using the axiom of choice. The case with exponent 1 is just the Sierpinski-Hartogs’ result that ℵ(α) ≤ 222α.
Citation
Thomas Forster. "Erdős-Rado without choice." J. Symbolic Logic 72 (3) 897 - 900, September 2007. https://doi.org/10.2178/jsl/1191333846
Information
Published: September 2007
First available in Project Euclid: 2 October 2007
zbMATH: 1129.03025
MathSciNet: MR2354905
Digital Object Identifier: 10.2178/jsl/1191333846
Rights: Copyright © 2007 Association for Symbolic Logic