Open Access
2009 A variational representation for random functionals on abstract Wiener spaces
Xicheng Zhang
J. Math. Kyoto Univ. 49(3): 475-490 (2009). DOI: 10.1215/kjm/1260975036

Abstract

We extend to abstract Wiener spaces the variational representation \[ \mathbb{E}[e^{F}] = \exp \left( \sup_{v\in\mathcal{H}^a}\mathbf{E} \left[ F(\cdot +v) - \frac{1}{2}\|v\|^2_{\mathbb{H}} \right] \right), \] proved by Boué and Dupuis [1] on the classical Wiener space. Here $F$ is any bounded measurable function on the abstract Wiener space $(\mathbb{W},\mathbb{H},\mu)$, and $\mathcal{H}^a$ denotes the space of $\mathcal{F}_t$-adapted $\mathbb{H}$-valued random fields in the sense of Üstünel and Zakai [11]. In particular, we simplify the proof of the lower bound given in [1, 3] by using the Clark-Ocone formula. As an application, a uniformly Laplace principle is established.

Citation

Download Citation

Xicheng Zhang. "A variational representation for random functionals on abstract Wiener spaces." J. Math. Kyoto Univ. 49 (3) 475 - 490, 2009. https://doi.org/10.1215/kjm/1260975036

Information

Published: 2009
First available in Project Euclid: 16 December 2009

zbMATH: 1194.60037
MathSciNet: MR2583599
Digital Object Identifier: 10.1215/kjm/1260975036

Subjects:
Primary: 60F10 , 60H07

Rights: Copyright © 2009 Kyoto University

Vol.49 • No. 3 • 2009
Back to Top