Open Access
2001 Self-intersection local time of fractional Brownian motions-via chaos expansion
Yaozhong Hu
J. Math. Kyoto Univ. 41(2): 233-250 (2001). DOI: 10.1215/kjm/1250517630

Abstract

Let $B_{1,t}^{H},\ldots ,B_{d,t}^{H}$ be $d$ independent fractional Brownian motions with Hurst parameter $H\in (0, 1)$. Denote $X_{t}=(B_{1,t}^{H},\ldots ,B_{d,t}^{H})$ and let $\delta$ be the Dirac delta function. It is shown that when $H< \mathrm{min}(3/(2d), 2/(d+2))$, the (renormalized) self-intersection local time of fractional Brownian motion, $\int _{0}^{T}\int _{0}^{t}\delta (X_{t}-X_{s})dsdt-\mathbb{E}\int _{0}^{T}\int _{0}^{t}\delta (X_{t}-X_{s})dsdt$, is in $D_{1,2}$, where $D_{1,2}$ is the Meyer-Watanabe test functional space, i.e. the $L^{2}$ space of “differentiable” functionals, whose precise meaning is given in Section 2.

Citation

Download Citation

Yaozhong Hu. "Self-intersection local time of fractional Brownian motions-via chaos expansion." J. Math. Kyoto Univ. 41 (2) 233 - 250, 2001. https://doi.org/10.1215/kjm/1250517630

Information

Published: 2001
First available in Project Euclid: 17 August 2009

zbMATH: 1008.60091
MathSciNet: MR1852981
Digital Object Identifier: 10.1215/kjm/1250517630

Subjects:
Primary: 60G18
Secondary: 60G15 , 60G17

Rights: Copyright © 2001 Kyoto University

Vol.41 • No. 2 • 2001
Back to Top