Open Access
Translator Disclaimer
2017 Generalized Seiberg-Witten Equations on a Riemann Surface
Rukmini Dey, Varun Thakre
J. Geom. Symmetry Phys. 45: 47-66 (2017). DOI: 10.7546/jgsp-45-2017-47-66

Abstract

In this paper we consider twice-dimensionally reduced, generalized Seiberg-Witten (S-W) equations, defined on a compact Riemann surface. A novel feature of the reduction technique is that the resulting equations produce an extra “Higgs field”. Under suitable regularity assumptions, we show that the moduli space of gauge-equivalent classes of solutions to the reduced equations, is a smooth Kähler manifold and construct a pre-quantum line bundle over the moduli space of solutions.

Citation

Download Citation

Rukmini Dey. Varun Thakre. "Generalized Seiberg-Witten Equations on a Riemann Surface." J. Geom. Symmetry Phys. 45 47 - 66, 2017. https://doi.org/10.7546/jgsp-45-2017-47-66

Information

Published: 2017
First available in Project Euclid: 5 December 2017

zbMATH: 06854987
MathSciNet: MR3751721
Digital Object Identifier: 10.7546/jgsp-45-2017-47-66

Rights: Copyright © 2017 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

JOURNAL ARTICLE
20 PAGES


SHARE
Back to Top