Open Access
2009 Existence, Uniqueness and Angle Computation for the Loxodrome on an Ellipsoid of Revolution
Abed Elhashash
J. Geom. Symmetry Phys. 13: 75-88 (2009). DOI: 10.7546/jgsp-13-2009-75-88

Abstract

We summarize a proof for the existence and uniqueness of the loxodrome joining two distinct points $p_0$ and $p_1$ on an open half of an ellipsoid of revolution. We also compute the unique angle $\alpha \in [0,2\pi)$ which the loxodrome makes with the meridians intersecting the loxodrome.

Citation

Download Citation

Abed Elhashash. "Existence, Uniqueness and Angle Computation for the Loxodrome on an Ellipsoid of Revolution." J. Geom. Symmetry Phys. 13 75 - 88, 2009. https://doi.org/10.7546/jgsp-13-2009-75-88

Information

Published: 2009
First available in Project Euclid: 24 May 2017

zbMATH: 1171.53005
MathSciNet: MR2504588
Digital Object Identifier: 10.7546/jgsp-13-2009-75-88

Rights: Copyright © 2009 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

Back to Top