Open Access
2010 Canonical endomorphism field on a Lie algebra
Jerzy KOCIK
J. Gen. Lie Theory Appl. 4: 1-17 (2010). DOI: 10.4303/jglta/G100302
Abstract

We show that every Lie algebra is equipped with a natural (1,1)-variant tensor field, the "canonical endomorphism field", determined by the Lie structure, and satisfying a certain Nijenhuis bracket condition. This observation may be considered as complementary to the Kirillov-Kostant-Souriau theorem on symplectic geometry of coadjoint orbits. We show its relevance for classical mechanics, in particular for Lax equations. We show that the space of Lax vector fields is closed under Lie bracket and we introduce a new bracket for vector fields on a Lie algebra. This bracket defines a new Lie structure on the space of vector fields.

References

1.

R. Abraham and J. Marsden. Foundations of Mechanics, Benjamin, New York, 1967. R. Abraham and J. Marsden. Foundations of Mechanics, Benjamin, New York, 1967.

2.

V. I. Arnol'd. Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978. MR690288 0386.70001 V. I. Arnol'd. Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978. MR690288 0386.70001

3.

J. F. Cariñena, A. Ibort, G. Marmo, and A. Perelomov. On the geometry of Lie algebras and Poisson tensors. J. Phys. A, 27 (1994), 7425–7449. MR1310279 0847.58025 10.1088/0305-4470/27/22/017 J. F. Cariñena, A. Ibort, G. Marmo, and A. Perelomov. On the geometry of Lie algebras and Poisson tensors. J. Phys. A, 27 (1994), 7425–7449. MR1310279 0847.58025 10.1088/0305-4470/27/22/017

4.

M. Crampin. Defining Euler-Lagrange fields in terms of almost tangent structures. Phys. Lett. A, 95 (1983), 466–468. MR708702 10.1016/0375-9601(83)90496-6 M. Crampin. Defining Euler-Lagrange fields in terms of almost tangent structures. Phys. Lett. A, 95 (1983), 466–468. MR708702 10.1016/0375-9601(83)90496-6

5.

M. Crampin. Tangent bundle geometry for Lagrangian dynamics. J. Phys. A, 16 (1983), 3755–3772. MR727054 0536.58004 10.1088/0305-4470/16/16/014 M. Crampin. Tangent bundle geometry for Lagrangian dynamics. J. Phys. A, 16 (1983), 3755–3772. MR727054 0536.58004 10.1088/0305-4470/16/16/014

6.

L. A. Dickey. Soliton Equations and Hamiltonian Systems, World Scientific, New Jersey, 1991. MR1147643 L. A. Dickey. Soliton Equations and Hamiltonian Systems, World Scientific, New Jersey, 1991. MR1147643

7.

P. Feinsilver, J. Kocik, and R. Schott. Representations and stochastic processes on groups of type-$H$. J. Funct. Anal., 115 (1993), 146–165. MR1228145 0797.60012 10.1006/jfan.1993.1084 P. Feinsilver, J. Kocik, and R. Schott. Representations and stochastic processes on groups of type-$H$. J. Funct. Anal., 115 (1993), 146–165. MR1228145 0797.60012 10.1006/jfan.1993.1084

8.

A. Kaplan. On the geometry of groups of Heisenberg type. Bull. London Math. Soc., 15 (1983), 35–42. MR686346 0521.53048 10.1112/blms/15.1.35 A. Kaplan. On the geometry of groups of Heisenberg type. Bull. London Math. Soc., 15 (1983), 35–42. MR686346 0521.53048 10.1112/blms/15.1.35

9.

A. Kirillov. Elements of the Theory of Representations, Springer-Verlag, New York, 1976. MR412321 0342.22001 A. Kirillov. Elements of the Theory of Representations, Springer-Verlag, New York, 1976. MR412321 0342.22001

10.

J. Kocik. Lie tensors, PhD Thesis, Southern Illinois University at Carbondale, July 1989. MR2638437 J. Kocik. Lie tensors, PhD Thesis, Southern Illinois University at Carbondale, July 1989. MR2638437

11.

G. Marmo and E. J. Saletan. Ambiguities in the Lagrangian and Hamiltonian formalism: transformation properties. Nuovo Cimento B, 40 (1977), 67–89. MR488142 10.1007/BF02739181 G. Marmo and E. J. Saletan. Ambiguities in the Lagrangian and Hamiltonian formalism: transformation properties. Nuovo Cimento B, 40 (1977), 67–89. MR488142 10.1007/BF02739181

12.

A. Lichnerowicz. Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom., 12 (1977), 253–300. MR501133 euclid.jdg/1214433987 A. Lichnerowicz. Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom., 12 (1977), 253–300. MR501133 euclid.jdg/1214433987

13.

P. W. Michor. Remarks on the Frölicher-Nijenhuis bracket. In “Differential Geometry and Its Applications (Brno, 1986)”, pp. 197–220, Reidel, Dordrecht, 1987. MR923350 P. W. Michor. Remarks on the Frölicher-Nijenhuis bracket. In “Differential Geometry and Its Applications (Brno, 1986)”, pp. 197–220, Reidel, Dordrecht, 1987. MR923350

14.

W. Ślebodziński. Sur les èquations de Hamilton. Bulletin de l'Académie Royale Belgique, 5 (1931), 864–870. W. Ślebodziński. Sur les èquations de Hamilton. Bulletin de l'Académie Royale Belgique, 5 (1931), 864–870.

15.

J. M. Souriau. Quantification géométrique. Comm. Math. Phys., 1 (1966), 374–398. MR207332 euclid.cmp/1103758996 J. M. Souriau. Quantification géométrique. Comm. Math. Phys., 1 (1966), 374–398. MR207332 euclid.cmp/1103758996

16.

W. M. Tulczyjew. Poisson brackets and canonical manifolds. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 931–935. MR397790 W. M. Tulczyjew. Poisson brackets and canonical manifolds. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 931–935. MR397790

17.

W. M. Tulczyjew. The graded Lie algebra of multivector fields and the generalized Lie derivative of forms. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 937–942. MR394723 W. M. Tulczyjew. The graded Lie algebra of multivector fields and the generalized Lie derivative of forms. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 937–942. MR394723

18.

K. Yano and S. Ishihara. Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973. MR350650 0262.53024 K. Yano and S. Ishihara. Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973. MR350650 0262.53024
Copyright © 2010 Ashdin Publishing (2009-2013) / OMICS International (2014-2016)
Jerzy KOCIK "Canonical endomorphism field on a Lie algebra," Journal of Generalized Lie Theory and Applications 4(none), 1-17, (2010). https://doi.org/10.4303/jglta/G100302
Published: 2010
Back to Top