Abstract
For all open Riemann surface $\mathcal{N}$ and real number $\theta \in (0, \pi/2)$, we construct a conformal minimal immersion $X = (X_1,X_2,X_3) : \mathcal{N} \to \mathbb{R}^3$ such that $X_3+\tan(\theta)\left|X_1\right| : \mathcal{N} \to \mathbb{R}$ is positive and proper. Furthermore, $X$ can be chosen with an arbitrarily prescribed flux map.
Moreover, we produce properly immersed hyperbolic minimal surfaces with non-empty boundary in $\mathbb{R}^3$ lying above a negative sublinear graph.
Citation
Antonio Alarcón. Francisco J. López. "Minimal surfaces in $\mathbb{R}^3$ properly projecting into $\mathbb{R}^2$." J. Differential Geom. 90 (3) 351 - 381, March 2012. https://doi.org/10.4310/jdg/1335273387
Information