Abstract
We consider the Yamabe flow $\frac{\partial g}{\partial t} = -(R_g - r_g) \, g$ where $g$is a Riemannian metric on a compact manifold $M, R_g$ denotes its scalar curvature, and $r_g$ denotes the mean value of the scalar curvature. We prove convergence of the Yamabe flow if the dimension $n$ satisfies $3 \leq n \leq 5$ or the initial metric is locally conformally flat.
Citation
Simon Brendle. "Convergence of the Yamabe flow for arbitrary initial energy." J. Differential Geom. 69 (2) 217 - 278, Feb 2005. https://doi.org/10.4310/jdg/1121449107
Information