Open Access
February, 2003 A Kawamata-Viehweg Vanishing Theorem on Compact Kähler Manifolds
Jean-Pierre Demailly, Thomas Peternell
J. Differential Geom. 63(2): 231-277 (February, 2003). DOI: 10.4310/jdg/1090426678

Abstract

We prove a Kawamata-Viehweg vanishing theorem on a normal compact Kähler space X: if L is a nef line bundle with L2 ≠ 0, then H>q(X,KX+L) = 0 for q ≥ dim X − 1. As an application we complete a part of the abundance theorem for minimal Kähler threefolds: if X is a minimal Kähler threefold, then the Kodaira dimension κ(X) is nonnegative.

Citation

Download Citation

Jean-Pierre Demailly. Thomas Peternell. "A Kawamata-Viehweg Vanishing Theorem on Compact Kähler Manifolds." J. Differential Geom. 63 (2) 231 - 277, February, 2003. https://doi.org/10.4310/jdg/1090426678

Information

Published: February, 2003
First available in Project Euclid: 21 July 2004

zbMATH: 1053.32011
MathSciNet: MR2015548
Digital Object Identifier: 10.4310/jdg/1090426678

Rights: Copyright © 2003 Lehigh University

Vol.63 • No. 2 • February, 2003
Back to Top