Open Access
Translator Disclaimer
March 2016 A lower bound for the number of negative eigenvalues of Schrödinger operators
Alexander Grigor’yan, Nikolai Nadirashvili, Yannick Sire
J. Differential Geom. 102(3): 395-408 (March 2016). DOI: 10.4310/jdg/1456754014

Abstract

We prove a lower bound for the number of negative eigenvalues for a Schrödinger operator on a Riemannian manifold via the integral of the potential.

Citation

Download Citation

Alexander Grigor’yan. Nikolai Nadirashvili. Yannick Sire. "A lower bound for the number of negative eigenvalues of Schrödinger operators." J. Differential Geom. 102 (3) 395 - 408, March 2016. https://doi.org/10.4310/jdg/1456754014

Information

Published: March 2016
First available in Project Euclid: 29 February 2016

zbMATH: 1356.53044
MathSciNet: MR3466803
Digital Object Identifier: 10.4310/jdg/1456754014

Rights: Copyright © 2016 Lehigh University

JOURNAL ARTICLE
14 PAGES


SHARE
Vol.102 • No. 3 • March 2016
Back to Top