Open Access
WINTER 2015 Star operations on Prüfer v -multiplication domains
Gyu Whan Chang
J. Commut. Algebra 7(4): 523-543 (WINTER 2015). DOI: 10.1216/JCA-2015-7-4-523

Abstract

Let $D$ be an integrally closed domain, $S(D)$ the set of star operations on $D$, $w$ the $w$-operation, and $S_w(D) = \{* \in S(D) \mid w \leq *\}$. Let $X$ be an indeterminate over $D$ and $N_v = \{f \in D[X] \mid c(f)_v = D\}$. In this paper, we show that, if $D$ is a Pr\"ufer $v$-multiplication domain (P$v$MD), then $|S_w(D)| = |S_w(D[X])| = |S(D[X]_{N_v})|$. We prove that $D$ is a P$v$MD if and only if $|\{* \in S_w(D) \mid *$ is of finite type$\}|\lt \infty$. We then use these results to give a complete characterization of integrally closed domains $D$ with $|S_w(D)| \lt \infty$.

Citation

Download Citation

Gyu Whan Chang. "Star operations on Prüfer v -multiplication domains." J. Commut. Algebra 7 (4) 523 - 543, WINTER 2015. https://doi.org/10.1216/JCA-2015-7-4-523

Information

Published: WINTER 2015
First available in Project Euclid: 19 January 2016

zbMATH: 1329.13003
MathSciNet: MR3451354
Digital Object Identifier: 10.1216/JCA-2015-7-4-523

Subjects:
Primary: 13A15 , 13G05

Keywords: $D[X]_{N_v}$ , $w$-operation , integrally closed domain , P$v$MD , star operation

Rights: Copyright © 2015 Rocky Mountain Mathematics Consortium

Vol.7 • No. 4 • WINTER 2015
Back to Top