Open Access
SUMMER 2014 Implicitization of de Jonquières parametrizations
Seyed Hamid Hassanzadeh, Aron Simis
J. Commut. Algebra 6(2): 149-172 (SUMMER 2014). DOI: 10.1216/JCA-2014-6-2-149

Abstract

One introduces a class of projective parameterizations that resemble generalized de~Jonqui\`eres maps. Any such parametrization defines a birational map $\mathfrak{F}$ of $\pp^n$ onto a hypersurface $V(F)\subset \pp^{n+1}$ with a strong handle to implicitization. From this side, the theory developed here extends recent work of Ben\'{\i}tez and D'Andrea on monoid parameterizations. The paper deals with both the ideal theoretic and effective aspects of the problem. The ring theoretic development gives information on the Castelnuovo-Mumford regularity of the base ideal of $\mathfrak{F}$. From the effective side, we give an explicit formula of $\deg(F)$ involving data from the inverse map of $\mathfrak{F}$ and show how the present parametrization relates to monoid parameterizations.

Citation

Download Citation

Seyed Hamid Hassanzadeh. Aron Simis. "Implicitization of de Jonquières parametrizations." J. Commut. Algebra 6 (2) 149 - 172, SUMMER 2014. https://doi.org/10.1216/JCA-2014-6-2-149

Information

Published: SUMMER 2014
First available in Project Euclid: 11 August 2014

zbMATH: 1311.14014
MathSciNet: MR3249834
Digital Object Identifier: 10.1216/JCA-2014-6-2-149

Subjects:
Primary: 13A30 , 13D02 , 13D45 , 13H15 , 14E05 , 14E07

Rights: Copyright © 2014 Rocky Mountain Mathematics Consortium

Vol.6 • No. 2 • SUMMER 2014
Back to Top