Fall 2024 THE PERFECTION CAN BE A NONCOHERENT GCD DOMAIN
Austyn Simpson
J. Commut. Algebra 16(3): 363-367 (Fall 2024). DOI: 10.1216/jca.2024.16.363

Abstract

We show that there exists a complete local Noetherian normal domain of prime characteristic whose perfection is a noncoherent GCD domain, answering a question of Patankar in the negative concerning characterizations of F-coherent rings. This recovers and extends a result of Glaz using tight closure methods.

Citation

Download Citation

Austyn Simpson. "THE PERFECTION CAN BE A NONCOHERENT GCD DOMAIN." J. Commut. Algebra 16 (3) 363 - 367, Fall 2024. https://doi.org/10.1216/jca.2024.16.363

Information

Received: 23 August 2023; Revised: 3 December 2023; Accepted: 31 December 2023; Published: Fall 2024
First available in Project Euclid: 28 August 2024

Digital Object Identifier: 10.1216/jca.2024.16.363

Subjects:
Primary: 13A35 , 13A50

Keywords: F-coherent , prime characteristic

Rights: Copyright © 2024 Rocky Mountain Mathematics Consortium

Vol.16 • No. 3 • Fall 2024
Back to Top