Spring 2024 DUALITIES AND EQUIVALENCES OF THE CATEGORY OF RELATIVE COHEN–MACAULAY MODULES
Parisa Pourghobadian, Kamran Divaani-Aazar, Ahad Rahimi
J. Commut. Algebra 16(1): 95-113 (Spring 2024). DOI: 10.1216/jca.2024.16.95

Abstract

We establish the global analogues of some dualities and equivalences in local algebra by developing the theory of relative Cohen–Macaulay modules. Let R be a commutative Noetherian ring (not necessarily local) with identity, and let 𝔞 be a proper ideal of R. The notions of 𝔞-relative dualizing modules and 𝔞-relative big Cohen–Macaulay modules are introduced. With the help of 𝔞-relative dualizing modules, we establish the global analogue of duality on the subcategory of Cohen–Macaulay modules in local algebra. Lastly, we investigate the behavior of the subcategory of 𝔞-relative Cohen–Macaulay modules and 𝔞-relative generalized Cohen–Macaulay modules under Foxby equivalence.

Citation

Download Citation

Parisa Pourghobadian. Kamran Divaani-Aazar. Ahad Rahimi. "DUALITIES AND EQUIVALENCES OF THE CATEGORY OF RELATIVE COHEN–MACAULAY MODULES." J. Commut. Algebra 16 (1) 95 - 113, Spring 2024. https://doi.org/10.1216/jca.2024.16.95

Information

Received: 12 March 2023; Accepted: 13 August 2023; Published: Spring 2024
First available in Project Euclid: 18 January 2024

MathSciNet: MR4690597
zbMATH: 07823249
Digital Object Identifier: 10.1216/jca.2024.16.95

Subjects:
Primary: 13C14 , 13D07 , 13D09 , 13D45

Keywords: Auslander class , Bass class , big Cohen–Macaulay module , cohomological dimension , dualizing module , Foxby equivalence , Grothendieck’s local duality , local cohomology , relative Cohen–Macaulay module , relative generalized Cohen–Macaulay module , relative system of parameters , semidualizing module

Rights: Copyright © 2024 Rocky Mountain Mathematics Consortium

Vol.16 • No. 1 • Spring 2024
Back to Top